About

PostgreSQL

This is a list of my favorite SQL Operators, Functions and Filters in PostgreSQL.

Jonathan Maas
www.theprototyper.design

Updated 1/6/2025

Name Example Description

SELECT SELECT * FROM table_name SELECT * chooses everything from a table.

LIMIT SELECT * FROM table_name Limits the output by the number of rows
LIMIT 10

ORDER BY SELECT item_id, item_amount FROM table_name Orders the table by a column.
BRDER BY item_amount ASC

ORDER BY (Multiple) SELECT * FROM table_name Orders the table by two columns in case the firstis
ORDER BY column1 ASC, column2 DESC; arepeat.

ORDER BY RANDOM() SELECT * Retrieves random rows.

FROM table_name
ORDER BY RANDOM()
LIMIT 10; -- Get 10 random rows

TABLESAMPLE SYSTEM()

GROUP BY

WHERE

BETWEEN

AND/OR

LIKE

ILIKE

=and IN

SELECT *

FROM table_name

TABLESAMPLE SYSTEM(1) -- Get approximate 1% of rows
LIMIT 10;

SELECT

department,

COUNT(*) as items_count
FROM table_name
GROUP BY department;
SELECT item_1, status, item_3
FROM table_name
WWHERE status = 'Good'
SELECT * FROM table_name
WHERE price BETWEEN 100 AND 200;
SELECT item_1, status, item_3
FROM table_name
BVHERE status = 'Good'

AND (amount BETWEEN 9000 AND 10000) OR

(amount > 15000)

SELECT * FROM table_name
WHERE

last_name LIKE 'Smith%'; -- Names starting with 'Smith’
but capitalized just like this
SELECT * FROM table_name
WHERE

last_name ILIKE 'smith%'; -- Names starting with 'smith’,
but can be any case
= is for exact matches, ie item_name = 'cake’, IN is multiple
values ie item_name IN 'cake', 'pie'

Retrieves a percentage of random rows

Groups the output by a certain set of column
values.

Filters the output by a value of a certain column

Filters the output to show values in a range.

Filters the output with a few more options.

% (Wildcard) SELECT * FROM table_name % means can be any amount of characters
WHERE
filename LIKE '%report%2024%' -- Contains report and
2024
OR description ILIKE '%laptop%' -- Matches laptop,
LAPTOP, LaPtOp
OR path LIKE '%/img/%/old/%'; -- Nested path pattern
_(Wildcard) SELECT * FROM table_name _is asetcharacter Wildcard
WHERE
sku LIKE'A_123" -- Matches A1123, AB123, etc.
ORcode LIKE'__' -- Exactly 3 characters
OR phone LIKE '+1 '; -- Exactly 11 digits after
+1
LENGTH() /* Basic Syntax */ Finds the length of a string or number, returns null
SELECT if itis null
first_name,
LENGTH(first_name) as name_length
FROM users;

-- Filters by Length

SELECT *

FROM products

WHERE LENGTH(product_name) > 20;

CONCATENATE or | |

EXTRACT

POSITION

/* With | | */

SELECT
first_name || '" | | last_name as full_name,
city || '," | | country as location

FROM customers;

-- With CONCAT()
SELECT
CONCAT(first_name, ', last_name) as full_name,
CONCAT(street, ', ', city, ', ', country) as address
FROM employees;
/* Extracting from a timestamp */
SELECT
order_date_timestamp,
EXTRACT(YEAR FROM order_date_timestamp) as year,
EXTRACT(MONTH FROM order_date_timestamp) as
month,
EXTRACT(DAY FROM order_date_timestamp) as day
FROM orders;
/* Basic syntax */
SELECT POSITION('world" IN 'Hello world'); -- Returns 7

-- Finding the @ in a string to parse out a half of the email

SELECT

email,

POSITION('@' IN email) as at_symbol_position
FROM users;

Concatenates strings, numbers or dates - will
change date to text.
Two ways of sayingit- | | or CONCAT

This is good for extracting part of a timestamp or
other time functions.

Finds a place in a string, returns 0 if not found.

SUBSTRING /* Basic Syntax */ Returns parts of strings or numbers, position starts

SELECT at1landnotO.
SUBSTRING('Hello World' FROM 1 FOR 5); -- Returns

'Hello'

SELECT
SUBSTRING('Hello World', 7, 5); -- Returns 'World'

-- Returns parts of phone number

SELECT

phone_number,

SUBSTRING(phone_number FROM 1 FOR 3) as
area_code,

SUBSTRING(phone_number FROM 4 FOR 3) as prefix
FROM contacts;

TO_CHAR /* Basic Syntax */ A way of turning timestamp numbers as a readable
SELECT format
order_date_timestamp,
TO_CHAR(order_date_timestamp,, 'MM/DD/YYYY') as
us_date,
TO_CHAR(order_date_timestamp,, 'DD Month YYYY') as
full_date,
TO_CHAR(order_date_timestamp,, 'Dy, DD Mon YYYY') as
custom_date
FROM orders;

-- With Current Timestamp

SELECT CURRENT_TIMESTAMP,
TO_CHAR(CURRENT_TIMESTAMP, '"MM/DD/YYYY') as
datel,
TO_CHAR(CURRENT_TIMESTAMP, 'DD Month YYYY') as
date2,
TO_CHAR(CURRENT_TIMESTAMP, 'Dy, DD Mon YYYY') as
date3
CASE WHEN SELECT
order_id,
amount,
CASE
WHEN amount < 100 THEN 'Small'
WHEN amount < 1000 THEN 'Medium'
ELSE 'Large’
END AS order_size
FROM table_name;

COALESCE

CAST

CAST and COALESCE

INNER JOIN

FULL OUTER JOIN

SELECT

COALESCE(actual_arrival-scheduled_arrival, '0:00') as

time_delay
FROM airport_schedule;

/* String to Integer */

SELECT CAST('100' AS INTEGER),

-- Or using :: syntax

'"100"::INTEGER,

-- Integer to String

CAST(100 AS VARCHAR)

SELECT rental_date,
COALESCE(CAST(return_date AS VARCHAR), 'not
returned')

FROM rentals

SELECT * FROM tablel

INNER JOIN table2

ON tablel.column_name = table2.column_name;
/* Basic Syntax */

SELECT * FROM tablel

FULL OUTER JOIN table2

ON tablel.column = table2.column;

/* FULL OUTER JOIN to find Mismatches */
SELECT

customers.customer_name,

orders.order_id
FROM customers
FULL OUTER JOIN orders
ON customers.customer_id = orders.customer_id
WHERE customers.customer_id IS NULL

OR orders.customer_id IS NULL;

COALESCE returns values that are not null, and
returns a specified value if the value is null. In the
previous example, there are null actual_arrivals,
and it returned those instances as 0:00 to keep in
line with the time value.

CAST changes values from one type to another

Sometimes you have to combine CAST and
COALESCE. If areturn_date is a Time stamp, you
canturnitinto a VARCHAR so that you can return a
VARCHAR value like 'not returned.’

Takes two tables and returns a single table with
only the values where a single shared key table are
identical. AlLNULL values will be excluded.

Takes two tables and returns a single table with all
values, uniting the tables with the single shared
key table. ALLNULL values are included.

LEFTJOIN

RIGHT JOIN

SELECT * FROM customers --Thisis the LEFT table
LEFT JOIN orders --This is the RIGHT table

ON customers.id = orders.customer_id;

SELECT * FROM customers --This is the LEFT table
RIGHT JOIN orders -- This is the RIGHT table

ON customers.id = orders.customer_id;

MULTIPLE JOINSs (two tables, for specificity SELECT *

FROM orders

INNER JOIN shipments

ON orders.order_id = shipments.order_id

AND orders.customer_id = shipments.customer_id;

Takes two tables, returns ALL records from the
LEFT table, and only the records with a matching
KEY value from the RIGHT table.

Takes two tables, returns ALL records from the
RIGHT table, and only the records with a matching
KEY value from the LEFT table.

This adds specificity to the filtering. It is good for
names as well - there might be multiple first_name
s, and multiple last_name s, but a first_name +
last_name combination is good

MULTIPLE JOINs (multiple tables) /* This is a query with four tables, customer is linked to
address, address is linked to city, and city is linked to
country */

SELECT first_name,

last_name, email,

country.country

BROM customer

BEFT JOIN address a

BN customer.address_id = a.address_id
BEFT JOIN@ity

BN a.city_id = city.city_id

BEFT JOIN country

BN city.country_id = country.country_id
WHERE country.country = 'Brazil'

UNION SELECT first_name, last_name, 'source_1'AS origin FROM This combines matching tables, or matching
tablel columns into one big table or set of big columns.
UNION
SELECT first_name, last_name, 'source_2' FROM table2

SUBQUERY (technique) SELECT * FROM A query within a query, ie making another SELECT
payment query to compare a value against an average.

/* Below making a subquery to make sure amount is bigger
than average */
WHERE (amount > (SELECT AVG(amount) from payment))

SUBQUERY + FROM

SUBQUERY SELECT + SELECT

CORRELATED SUBQUERY

/* Subquery FROM - end with the top clause, refer to the A way to subquery another calculation.
alias and say itis from*/

SELECT AVG(total_payment)

/* FROM says the second clause is done first */

FROM

/* Subquery FROM - start with the second clause, give it an

alias*/

(SELECT customer_id, SUM(amount) AS total_payment

FROM payment

GROUP BY customer_id)

/* You can add a column with a Select subquery provided it A way to add another column of identical values to
is the same ie a Sum or an Avg */ a query.

SELECT *,

ESELECT ROUND(AVG(amount), 2) AS avg_amount FROM

payment)

BROM payment

/* You can add a column of varying values if you limit it to

one */

SELECT *,

ESELECT amount AS first_amount_in_list FROM payment

LIMIT 1)

BROM payment

SELECT * FROM payment p1 Correlated subquery finds the comparison of a
BVHERE amount = (SELECT MAX(amount) FROM payment column compared to itself, ie for each itemin a

p2 category purchased, which items are higher than
WVHERE p1.customer_id = p2.customer_id) average for that category

®RDER BY customer_id For this example, it shows only payments that have

the highest amount per customer

CORRELATED SUBQUERY AS SELECT

CREATE DATABASE

DROP DATABASE

SELECT payment_id, customer_id, amount, (SELECT
MAX(amount) FROM payment p2

WWHERE p1l.customer_id = p2.customer_id) AS
max_amount FROM payment p1

CREATE TABLE director (

B make a Primary Key, which implies thatit is Unique and
Not Null, Serial adds incremental value */
@irector_id SERIAL PRIMARY KEY,

P make another few columns */
@irector_account_name VARCHAR(20) UNIQUE,
first_name VARCHAR (50),

B Give a default value to this column */

Bast_name VARCHAR (50) DEFAULT 'Not Specified’,
B This column is a date */

@ate_of_birth DATE,

B This acts as a Foreign key to another table */
@ddress_id INT REFERENCES address(address_id)

)

/* be warned that you be wary of this */
DROP DATABASE database_name;

This adds a correlated subquery as a column

Commented Create table command with a few
ways of giving each column a constraint

Be warned - it is an easy command but be wary

ALTER TABLE ALTER TABLE director Here is a few alterations with what each one is
change column to a different type commented out
BLTER COLUMN director_account_name TYPE
VARCHAR(30)

change column to have no default

BLTER COLUMN last_name DROP DEFAULT
change constraint on column so it is not null
BLTER COLUMN last_name SET NOT NULL
add a column with type

BDD COLUMN email VARCHAR(40)

rename a column
BENAME COLUMN director_account_name TO
account_name

rename the table
BENAME TO directors

TRUNCATE TABLE TRUNCATE table_name Keeps table, deletes what is inside the table
--or
TRUNCATE TABLE table_name
CHECK /* Making a table with a few checks */ Check sets a few constraints when you are setting
CREATE TABLE employees (up atable for values. You can give the checks
id SERIAL PRIMARY KEY, names butif not it will assign it a name.

-- check to see if name is greater than 1 character
name TEXT CHECK (length(name)>1),

-- check to see if age is between a certain range
age INTEGER CHECK (age >= 18 AND age < 65),
-- check to make sure salary is a positive number
salary NUMERIC CHECK (salary > 0)

);

ALTER TABLE CHECK

/* Query 1 - Drop existing constraint - if you have not made You can alter tables with checks, and also drop

its name, you can find it through PG Admin */ checks.
ALTER TABLE songs
BROP CONSTRAINT songs_price_check; You can find the constraint name through PG

Admin, and you must do two queries - first to drop
/* Query 2 - Make new constraint with new value, and give the existing constraint, and then another to make
it the same name */ the new one, often with the same name.
ALTER TABLE songs
BDD CONSTRAINT songs_price_check CHECK (price >=
.99);

	SQL Operators

