
About

Updated 1/6/2025

Name Example Description

SELECT SELECT * FROM table_name SELECT * chooses everything from a table.
LIMIT SELECT * FROM table_name

LIMIT 10
Limits the output by the number of rows

ORDER BY SELECT item_id, item_amount FROM table_name
	ORDER BY item_ amount ASC

Orders the table by a column.

ORDER BY (Multiple) SELECT * FROM table_name
ORDER BY column1 ASC, column2 DESC;

Orders the table by two columns in case the first is
a repeat.

ORDER BY RANDOM() SELECT *
FROM table_name
ORDER BY RANDOM()
LIMIT 10; -- Get 10 random rows

Retrieves random rows.

This is a list of my favorite SQL Operators, Functions and Filters in PostgreSQL.
Jonathan Maas
www.theprototyper.design

TABLESAMPLE SYSTEM() SELECT *
FROM table_name
TABLESAMPLE SYSTEM(1) -- Get approximate 1% of rows
LIMIT 10;

Retrieves a percentage of random rows

GROUP BY SELECT
 department,
 COUNT(*) as items_count
FROM table_name
GROUP BY department;

Groups the output by a certain set of column
values.

WHERE SELECT item_1, status, item_3
FROM table_name
	WHERE status = 'Good'

Filters the output by a value of a certain column

BETWEEN SELECT * FROM table_name
WHERE price BETWEEN 100 AND 200;

Filters the output to show values in a range.

AND/OR SELECT item_1, status, item_3
FROM table_name
	WHERE status = 'Good'
 AND (amount BETWEEN 9000 AND 10000) OR
(amount > 15000)

Filters the output with a few more options.

LIKE SELECT * FROM table_name
WHERE
 last_name LIKE 'Smith%'; -- Names starting with 'Smith'
but capitalized just like this

ILIKE SELECT * FROM table_name
WHERE
 last_name ILIKE 'smith%'; -- Names starting with 'smith',
but can be any case

= and IN = is for exact matches, ie item_name = 'cake', IN is multiple
values ie item_name IN 'cake', 'pie'

% (Wildcard) SELECT * FROM table_name
WHERE
 filename LIKE '%report%2024%' -- Contains report and
2024
 OR description ILIKE '%laptop%' -- Matches laptop,
LAPTOP, LaPtOp
 OR path LIKE '%/img/%/old/%'; -- Nested path pattern

% means can be any amount of characters

_ (Wildcard) SELECT * FROM table_name
WHERE
 sku LIKE 'A_123' -- Matches A1123, AB123, etc.
 OR code LIKE '___' -- Exactly 3 characters
 OR phone LIKE '+1___________'; -- Exactly 11 digits after
+1

_ is a set character Wildcard

LENGTH() /* Basic Syntax */
SELECT
 first_name,
 LENGTH(first_name) as name_length
FROM users;

-- Filters by Length
SELECT *
FROM products
WHERE LENGTH(product_name) > 20;

Finds the length of a string or number, returns null
if it is null

CONCATENATE or || /* With || */
SELECT
 first_name || ' ' || last_name as full_name,
 city || ', ' || country as location
FROM customers;

-- With CONCAT()
SELECT
 CONCAT(first_name, ' ', last_name) as full_name,
 CONCAT(street, ', ', city, ', ', country) as address
FROM employees;

Concatenates strings, numbers or dates - will
change date to text.
Two ways of saying it - || or CONCAT

EXTRACT /* Extracting from a timestamp */
SELECT
 order_date_timestamp,
 EXTRACT(YEAR FROM order_date_timestamp) as year,
 EXTRACT(MONTH FROM order_date_timestamp) as
month,
 EXTRACT(DAY FROM order_date_timestamp) as day
FROM orders;

This is good for extracting part of a timestamp or
other time functions.

POSITION /* Basic syntax */
SELECT POSITION('world' IN 'Hello world'); -- Returns 7

-- Finding the @ in a string to parse out a half of the email

SELECT
 email,
 POSITION('@' IN email) as at_symbol_position
FROM users;

Finds a place in a string, returns 0 if not found.

SUBSTRING /* Basic Syntax */
SELECT
 SUBSTRING('Hello World' FROM 1 FOR 5); -- Returns
'Hello'
SELECT
 SUBSTRING('Hello World', 7, 5); -- Returns 'World'

-- Returns parts of phone number
 SELECT
 phone_number,
 SUBSTRING(phone_number FROM 1 FOR 3) as
area_code,
 SUBSTRING(phone_number FROM 4 FOR 3) as prefix
FROM contacts;

Returns parts of strings or numbers, position starts
at 1 and not 0.

TO_CHAR /* Basic Syntax */
SELECT
 order_date_timestamp,
 TO_CHAR(order_date_timestamp,, 'MM/DD/YYYY') as
us_date,
 TO_CHAR(order_date_timestamp,, 'DD Month YYYY') as
full_date,
 TO_CHAR(order_date_timestamp,, 'Dy, DD Mon YYYY') as
custom_date
FROM orders;

-- With Current Timestamp

SELECT CURRENT_TIMESTAMP,
TO_CHAR(CURRENT_TIMESTAMP, 'MM/DD/YYYY') as
date1,
 TO_CHAR(CURRENT_TIMESTAMP, 'DD Month YYYY') as
date2,
 TO_CHAR(CURRENT_TIMESTAMP, 'Dy, DD Mon YYYY') as
date3

A way of turning timestamp numbers as a readable
format

CASE WHEN SELECT
 order_id,
 amount,
 CASE
 WHEN amount < 100 THEN 'Small'
 WHEN amount < 1000 THEN 'Medium'
 ELSE 'Large'
 END AS order_size
FROM table_name;

COALESCE SELECT
 COALESCE(actual_arrival-scheduled_arrival, '0:00') as
time_delay
FROM airport_schedule;

COALESCE returns values that are not null, and
returns a specified value if the value is null. In the
previous example, there are null actual_arrivals,
and it returned those instances as 0:00 to keep in
line with the time value.

CAST /* String to Integer */
SELECT CAST('100' AS INTEGER),
-- Or using :: syntax
'100'::INTEGER,
-- Integer to String
CAST(100 AS VARCHAR)

CAST changes values from one type to another

CAST and COALESCE SELECT rental_date,
COALESCE(CAST(return_date AS VARCHAR), 'not
returned')
FROM rentals

Sometimes you have to combine CAST and
COALESCE. If a return_date is a Time stamp, you
can turn it into a VARCHAR so that you can return a
VARCHAR value like 'not returned.'

INNER JOIN SELECT * FROM table1
INNER JOIN table2
ON table1.column_name = table2.column_name;

Takes two tables and returns a single table with
only the values where a single shared key table are
identical. All NULL values will be excluded.

FULL OUTER JOIN /* Basic Syntax */
SELECT * FROM table1
FULL OUTER JOIN table2
ON table1.column = table2.column;

/* FULL OUTER JOIN to find Mismatches */
SELECT
 customers.customer_name,
 orders.order_id
FROM customers
FULL OUTER JOIN orders
ON customers.customer_id = orders.customer_id
WHERE customers.customer_id IS NULL
 OR orders.customer_id IS NULL;

Takes two tables and returns a single table with all
values, uniting the tables with the single shared
key table. All NULL values are included.

LEFT JOIN SELECT * FROM customers -- This is the LEFT table
LEFT JOIN orders -- This is the RIGHT table
ON customers.id = orders.customer_id;

Takes two tables, returns ALL records from the
LEFT table, and only the records with a matching
KEY value from the RIGHT table.

RIGHT JOIN SELECT * FROM customers -- This is the LEFT table
RIGHT JOIN orders -- This is the RIGHT table
ON customers.id = orders.customer_id;

Takes two tables, returns ALL records from the
RIGHT table, and only the records with a matching
KEY value from the LEFT table.

MULTIPLE JOINs (two tables, for specificitySELECT *
FROM orders
INNER JOIN shipments
ON orders.order_id = shipments.order_id
AND orders.customer_id = shipments.customer_id;

This adds specificity to the filtering. It is good for
names as well - there might be multiple first_name
s, and multiple last_name s, but a first_name +
last_name combination is good

MULTIPLE JOINs (multiple tables) /* This is a query with four tables, customer is linked to
address, address is linked to city, and city is linked to
country */
SELECT first_name,
last_name, email,
country.country
	FROM customer
		LEFT JOIN address a
		ON customer.address_id = a.address_id
			LEFT JOIN	city
			ON a.city_id = city.city_id
				LEFT JOIN country
				ON city.country_id = country.country_id
	WHERE country.country = 'Brazil'

UNION SELECT first_name, last_name, 'source_1' AS origin FROM
table1
UNION
SELECT first_name, last_name, 'source_2' FROM table2

This combines matching tables, or matching
columns into one big table or set of big columns.

SUBQUERY (technique) SELECT * FROM
payment
/* Below making a subquery to make sure amount is bigger
than average */
WHERE (amount > (SELECT AVG(amount) from payment))

A query within a query, ie making another SELECT
query to compare a value against an average.

SUBQUERY + FROM /* Subquery FROM - end with the top clause, refer to the
alias and say it is from*/
SELECT AVG(total_payment)
/* FROM says the second clause is done first */
FROM
/* Subquery FROM - start with the second clause, give it an
alias*/
(SELECT customer_id, SUM(amount) AS total_payment
FROM payment
GROUP BY customer_id)

A way to subquery another calculation.

SUBQUERY SELECT + SELECT /* You can add a column with a Select subquery provided it
is the same ie a Sum or an Avg */
SELECT *,
	(SELECT ROUND(AVG(amount), 2) AS avg_amount FROM
payment)
	FROM payment

/* You can add a column of varying values if you limit it to
one */

SELECT *,
	(SELECT amount AS first_amount_in_list FROM payment
LIMIT 1)
	FROM payment

A way to add another column of identical values to
a query.

CORRELATED SUBQUERY SELECT * FROM payment p1
	WHERE amount = (SELECT MAX(amount) FROM payment
p2
		WHERE p1.customer_id = p2.customer_id)
	ORDER BY customer_id

Correlated subquery finds the comparison of a
column compared to itself, ie for each item in a
category purchased, which items are higher than
average for that category
For this example, it shows only payments that have
the highest amount per customer

CORRELATED SUBQUERY AS SELECT SELECT payment_id, customer_id, amount, (SELECT
MAX(amount) FROM payment p2
		WHERE p1.customer_id = p2.customer_id) AS
max_amount FROM payment p1

This adds a correlated subquery as a column

CREATE DATABASE CREATE TABLE director (
	/* make a Primary Key, which implies that it is Unique and
Not Null, Serial adds incremental value */
	director_id SERIAL PRIMARY KEY,
	/* make another few columns */
	director_account_name VARCHAR(20) UNIQUE,
	first_name VARCHAR (50),
	/* Give a default value to this column */
	last_name VARCHAR (50) DEFAULT 'Not Specified',
	/* This column is a date */
	date_of_birth DATE,
	/* This acts as a Foreign key to another table */
	address_id INT REFERENCES address(address_id)

)

Commented Create table command with a few
ways of giving each column a constraint

DROP DATABASE /* be warned that you be wary of this */
DROP DATABASE database_name;

Be warned - it is an easy command but be wary

ALTER TABLE ALTER TABLE director
	-- change column to a different type
	ALTER COLUMN director_account_name TYPE
VARCHAR(30)

	-- change column to have no default
	ALTER COLUMN last_name DROP DEFAULT
	
	-- change constraint on column so it is not null
	ALTER COLUMN last_name SET NOT NULL
	
	-- add a column with type
	ADD COLUMN email VARCHAR(40)

	-- rename a column
	RENAME COLUMN director_account_name TO
account_name

	-- rename the table
	RENAME TO directors

Here is a few alterations with what each one is
commented out

TRUNCATE TABLE TRUNCATE table_name
-- or
TRUNCATE TABLE table_name

Keeps table, deletes what is inside the table

CHECK /* Making a table with a few checks */
CREATE TABLE employees (
 id SERIAL PRIMARY KEY,
 -- check to see if name is greater than 1 character
 name TEXT CHECK (length(name)>1),
 -- check to see if age is between a certain range
 age INTEGER CHECK (age >= 18 AND age < 65),
 -- check to make sure salary is a positive number
 salary NUMERIC CHECK (salary > 0)
);

Check sets a few constraints when you are setting
up a table for values. You can give the checks
names but if not it will assign it a name.

ALTER TABLE CHECK /* Query 1 - Drop existing constraint - if you have not made
its name, you can find it through PG Admin */
ALTER TABLE songs
	DROP CONSTRAINT songs_price_check;

/* Query 2 - Make new constraint with new value, and give
it the same name */
ALTER TABLE songs
	ADD CONSTRAINT songs_price_check CHECK (price >=
.99);

You can alter tables with checks, and also drop
checks.

You can find the constraint name through PG
Admin, and you must do two queries - first to drop
the existing constraint, and then another to make
the new one, often with the same name.

	SQL Operators

